Comparative studies of the spectroscopic properties of Nd: YAG nanocrystals, transparent ceramic and single crystal
نویسندگان
چکیده
Detailed comparative spectroscopic studies of Nd doped YAG nanocrystals, transparent ceramic and single crystal have been performed. Although most of the radiative spectral properties of Nd are almost in good agreement between the three hosts, the non-radiative losses are significantly high in nanocrystals, which are attributed due to the presence of large amount of hydroxyl groups on the nanocrystals surface which deteriorates the quality of the material for laser applications. In addition, wavelength dependent scattering loss for the Nd doped YAG nanocrystals is found significantly high compared to those of Nd doped single crystal and ceramic. ©2012 Optical Society of America OCIS codes: (300.1030) Absorption; (300.2140) Emission; (290.5850) Scattering, particles; (260.2510) Fluorescence; (260.6580) Stark effect; (160.4670) Optical materials; (160.4760) Optical properties. References and links 1. A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater. 19(1), 183–187 (2002). 2. R. Boulesteix, A. Maître, J. F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express 18(14), 14992–15002 (2010). 3. S. K. Durrani, K. Saeed, A. H. Qureshi, M. Ahmad, M. Arif, N. Hussain, and T. Mohammad, “Growth of Nddoped YAG powder by sol spray process,” J. Therm. Anal. Calorim. 104(2), 645–651 (2011). 4. H. Gong, D.-Y. Tang, H. Huang, and J. Ma, “Agglomeration control of Nd:YAG nanoparticles via freeze drying for transparent Nd:YAG ceramics,” J. Am. Ceram. Soc. 92(4), 812–817 (2009). 5. A. Ikesue, K. Kamata, and K. Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J. Am. Ceram. Soc. 79(7), 1921–1926 (1996). 6. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical Scattering Centers in Polycrystalline Nd:YAG Laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997). 7. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962). 8. J. Li, Y. Pan, F. Qiu, Y. Wu, and J. Guo, “Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio,” Ceram. Int. 34(1), 141–149 (2008). 9. J. Li, Y. Pan, F. Qiu, Y. Wu, W. Liu, and J. Guo, “Synthesis of nanosized Nd:YAG powders via gel combustion,” Ceram. Int. 33(6), 1047–1052 (2007). 10. X.-X. Li, W.-J. Wang, G.-B. Qiu, X.-M. Luo, and S.-J. Su, “Preparation of polycrystalline Nd:YAG nanopowders via gel combustion method,” Cailiao Kaifa Yu Yingyong 24, 33–38 (2009). 11. H. Liu, Y. Sang, H. Qin, Y. Lv, and J. Wang, “Spray freeze drying method for preparation of Nd-doped yttrium aluminum garnet micro-sized and nano-sized powders” (Shandong University, China, 2011), 6 pp. 12. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000). 13. Z. Liu, W. Wen, and C. Pang, “Preparation Nd:YAG powder by co-precipitation method and study on the effect of pH,” Taoci (Xianyang, China) 41, 33–35 (2009). 14. L. Wang, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, “Effect of Nd-doping on the optical properties of yttrium aluminum garnet nanopowders,” J. Nanosci. Nanotechnol. 8(3), 1454–1457 (2008). 15. P. Yuan, Y. Wang, B. Li, H. Xu, and J. Wang, “Preparation and characterization of Nd:YAG nano-particles via microwave homogeneous precipitation method,” Zhongguo Fenti Jishu 13, 8–10, 20 (2007). 16. X. Zhang, D. Liu, H. Liu, J. Wang, H. Qin, and Y. Sang, “Microstructural characteristics of Nd:YAG powders leading to transparent ceramics,” J. Rare Earths 29, 585–591 (2011). #159671 $15.00 USD Received 15 Dec 2011; revised 3 Feb 2012; accepted 6 Feb 2012; published 8 Feb 2012 (C) 2012 OSA 1 March 2012 / Vol. 2, No. 3 / OPTICAL MATERIALS EXPRESS 235 17. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of Polycrystalline, Transparent YAG Ceramics by a SolidState Reaction Method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995). 18. M. Sekita, H. Haneda, T. Yanagitani, and S. Shirasaki, “Induced emission cross section of Nd:Y3Al5O12 ceramics,” J. Appl. Phys. 67(1), 453–458 (1990). 19. M. Sekita, H. Haneda, S. Shirasaki, and T. Yanagitani, “Optical spectra of undoped and rare earth (=Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12,” J. Appl. Phys. 69(6), 3709–3718 (1991). 20. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004). 21. A. Kozłowska, M. Nakielska, D. Podniesiski, H. Wglarz, A. Wajler, Z. Librant, T. Łukasiewicz, and A. Malg, “Comparison of spectroscopic properties of neodymium-doped aluminium garnet (Nd:YAG) ceramics obtained by reactive sintering of Al2O3, Y2O3 and Nd2O3 and by synthesis of nanocrystalline Nd:YAG powders,” Proc. SPIE 7934, 79341B, 79341B-6 (2011). 22. D. K. Sardar, K. L. Nash, R. M. Yow, and J. B. Gruber, “Absorption intensities and emission cross section of intermanifold transition of Er in Er:Y2O3 nanocrystals,” J. Appl. Phys. 101(11), 113115 (2007). 23. D. K. Sardar, D. M. Dee, K. L. Nash, R. M. Yow, and J. B. Gruber, “Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd(4f ) in polycrystalline ceramic Y2O3,” J. Appl. Phys. 100(12), 123106 (2006). 24. G. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). 25. A. A. Kaminskii, Laser Crystals: Physics and Properties (Springer-Verlag, 1979). 26. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1990). 27. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3: Eu nanoparticles on the surrounding medium,” Phys. Rev. B 60(20), R14012–R14015 (1999). 28. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymiumand chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3(1), 102–114 (1986). 29. D. Chen, Y. Wang, E. Ma, Y. Yu, F. Liu, and R. Li, “Spectroscopic and stimulated emission characteristics of Nd in transparent glass ceramic embedding β-YF3 nanocrystals,” J. Appl. Phys. 102(2), 023504 (2007). 30. D. K. Sardar, R. M. Yow, J. B. Gruber, T. H. Allik, and B. Zandi, “Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-Stark transitions of Nd(4f) in polycrystalline ceramic garnet Y3Al5O12,” J. Lumin. 116(1-2), 145–150 (2006). 31. A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003). 32. G. D. Yoder, P. K. Diwakar, and D. W. Hahn, “Assessment of soot particle vaporization effects during laserinduced incandescence with time-resolved light scattering,” Appl. Opt. 44(20), 4211–4219 (2005). 33. W. Chen, Doped Nanomaterials and Nanodevices (American Scientific Publishers, 2010). 34. D. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953). 35. B. Di Bartolo and G. Armagan, A. International School of Atomic and Molecular Spectroscopy, Spectroscopy of Solid-State Laser-Type Materials (Plenum Press, 1987). 36. D. E. Day and J. M. Stevels, “Effect of dissolved water on the internal friction of glass,” J. Non-Cryst. Solids 14(1), 165–177 (1974).
منابع مشابه
Infrared and upconversion spectroscopic studies of high Ercontent transparent YAG ceramic
In this article, we report the detailed spectroscopic studies of high Ercontent (50%) transparent YAG ceramic co-doped with nominal Cr content (0.1 mol %). Various radiative and non-radiative spectroscopic properties such as radiative decay time, fluorescence branching ratio, emission/absorption cross sections, internal radiative quantum yields of the infrared and the upconverted emission bands...
متن کاملSPECTROSCOPIC INVESTIGATION OF Sm IN YAG CERAMIC
An analysis of the high resolution optical spectra (at 10 or 300 K) of Sm in YAG transparent ceramics is presented. The peculiarities of the spectra in ceramics are outlined. Accurate data for the application of Sm: YAG ceramic to suppress parasitic oscillations in high power Nd: YAG ceramic composite lasers are obtained.
متن کاملFT-Raman Spectroscopic Studies of Nd/YAG Laser Irradiated Human Dental Enamel
FTR-Raman Spectra of human dental enamel, both laser-irradiated and untreated, are reported. Spectra are compared with hydroxyapatite. It is evident that unlike the CO2 laser, the Nd/YAG laser does not induce any chemical change in dental enamel.
متن کاملThe Role of Factors Influencing the Optical Properties of Yttrium Aluminum Garnet Ceramic Body
Yttrium Aluminum Garnet (Y3Al5O12) is a transparent ceramic with a wide range of applications such as high mechanical strength windows, high power laser sources and radiation detectors. The most important challenge in making these ceramics is the problem of low light transmittance, especially in the visible area in the range of 400 to 700 nm, which is greatly affected and reduced by various fac...
متن کاملNonlinear refractive index measurement on pure and Nd doped YAG ceramic by dual arm Z-scan technique
Transparent ceramics gain much attention as an alternative medium for high power ultra-short lasers because of its superior thermal properties over single crystals. Measurement of nonlinear refractive index is essential to understand the limit of such material for ultra-short laser generation. Dual arm Z-scan technique was employed to measure n2 for single crystal and ceramic at the same time t...
متن کامل